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FOR A RIGID WING SUBJECTED TO SINUSOIDAL GUSTS AND TO
SINUSOIDAL SINKING OSCILIATIONS

By Joseph A. Drischler
SUMMARY

The total 1ift responses of wings to sinusoidal gusts and to sinuse
oldal vertical oscillations ere calculated from the response to gust
penetration and to a sudden change in sinking velocity through use of the
well-esteblished reciprocal relations for unsteady flow. The cases con-
sidered are two-dimensional wings in Incompressible, subsonic compressible,
sonic, and supersonic flow; elliptical and rectangulsr wings in incom-
pressible flow; wlde rectangular and delte wings in supersonic flow; and
delte wings of vanishingly low aspect ratlo in incompressible and com-
pressible flow. TFor most of the cases consldered, closed-form expressions
ere given and the final results are presented in the form.of plots of the
square of the modulus of the 1ift coefficient for wings in a simusoidally
oscillating gust and in the form of the real and imaginary parts of the
1ift component for wings undergoing sinusoidal sinking oscillations. A
sumery table 1s presented as a guide to the scope and results of this
peper; this table contains the figure and equation mumbers for the types
of flow and plan forms considered.

INTRODUCTION

Two of the factors required in the harmonic analysis of airplane
response to contimuous etmospheric turbulence are the unsteady-lift func-
tions associated with simusoldal vertical oscillations and with sinusoidal
gusts. The unsteady-lift functions associated with & rigid wing under-
going sinusoidal translational oscillations have been derived in refer-
ences 1 to 10 for two-dimensional wings in incompressible, subsonic com-
pressible, sonic, and supersonic flow; for elliptical and rectangular
wings in incompressible flow; for wide rectenguler and delta wings in
supersonic flow; and for very narrow delta wings in incompressible and
compressible flow. Calculetions of the unsteady-lift functions associated
with rigid restrained wings in sinusoidal gusts seem to be nonexistent,
with the exception of the work by Jones (ref. 6) for elliptical wings in
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incompressible flow and by Garrick (ref. 11) and Sears (ref. 12) for
wings in two-dimensional incompressible flow.

The purpose of this report is twofold - to compile the unsteady-
lift functions associated with sinusoidel sinking oscillations and to
derive the unsteady-1ift functions associated with a rigid restrained
wing in a sinusoidael gust. These latter functions are derived herein
from existing unsteady-1ift functions for a wing penetrating a sharp-
edged gust by means of the reciprocal relation between the function for
8 wing in a sinusoidal gust and the function for a wing penetrating a
unit sharp-edged gust. The reciprocal reletion used was of the same type
as that reported in reference 11. -

The unsteady-lift functions associated with a rigid restrained wing
in a simusoidal oscillating gust are derived for two-dimensional wings
in incompressible, subsonic compressible, sonic, and supersonic flow;
for elliptical and rectanguler wings in incompressible flow; and for wide
rectanguler and delta wings in supersonic flow. In addition, the indicial
Lift function for a wing penetrating a sharp-edged gust and the corre=-
sponding oscillatory 1ift function are derived for a delta wing of van-
ishing aspect ratio in compressible flow. The functions presented in
this paper are total 1ift functions which include the circulatory emd
noncirculatory components.

In studies of the airplane response to atmospheric turbulence (see
ref. 13, for instance), the unsteady-lift functions for a rigid wing in
a simusoidal gust usually appeer in the form of the square of the modulus
of 1ift coefficient, whereas the unsteady-1ift functions for a wing under-
going simisoidal sinking oscilletions appesr in the form of the individual
in-phese and out-of-phase (real and imeginery, respectively) components
of 1ift. Therefore, on this basis, all the results in this paper are
presented in the figures in the forms mentioned. An index to the Ffigures
and equations or other sources of informetion for the unsteady-1ift func-
tions for the types of flow and wing plan forms considered herein is pre-~
sented as a table.

SYMBOLS

A aspect ratio
a velocity of sound

b(x) spanwise coordinate of leading edge of wing, measured from root
chord, mx

c(x) total 1ift coefficient for wing oscillating harmonically in pure
transletional motion, normslized to unity by its steady-stete
value, F(k) + 1G(k)
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c(k)c:i.r

F(k)
£(k)
£, (M, %)

6(x)

In (k)

k;(s)
k1(8)eosr
ky(s)

Lg,ind
Lg,osc

Ling
Losc

1(x)

circulatory component of C(k)
steady-state 1ift coefficient
wing lift-curve slope

root chord of wing
complete elliptic integral of second kind with modulus
- (&)
E N
in-phase camponent of C(k) (real part)
Fresnel integral (see eq. (56))

Schwerz function of order n (see eq. (62))
out-of-phese component of C(k) (imeginery part)
amplitude of vertical velocity of wing

Bessel function of flrst kind

reduced-frequency parsmeter, wmc/2V

1ift coefficlent for wing experiencing sudden chenge in sinking
speed, normalized to unity by its steady-state lift

circulatory component of k;j(s)

11ift coefficient for wing venetrating sharp-edged gust,
normalized to unity by its steady-state 1ift

1ift on rigid restralned wing penetrating sharp-edged gust

total 1ift on rigid restrained wing in sBimusoidal gust
1ift on rigid wing experiencing sudden change in sinking speed

total 1ift on rigid wing oscillating harmonically in pure
translational motion

1ift per unit length
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M Mach number .
m tangent of semispex angle of delts wing
Mp/q loading coefficient '
q dynamic pressure, Egg
S . wing area
8 nondimensional distance traveled, root semichords
t distence traveled by sound wave, at'
t! time variable
v forward velocity
Wo amplitude of vertical gust veloclty
X,¥,% coordinate axes, fixed on wing
Y, (k) Bessel function of second kind -
B = \n? - 1 .
5(s) unit impulse function or Dirac delta function
o} alr density
(k) total 1ift coefficient for wing immersed in hermonically
oscillating gust, normalized to unity by its steady-state
value
(0] circular frequency
@ = 2M2k/[52
I(s) unit jump function

PROCEDURE

~ Since this paper deals with the 1lift functions C(k) eand @(k), the
1ift due to sinusoidel sinking oscillations and the '1ift due to simusoidal



NACA TN 3748 5

gusts, respectively, & brief descfiption of the total lift in terms of
these functions and the method by which they were derived is in order.

For a rigid wing oscillating harmonically in pure translational
motion, the total 1ift cen be expressed as

> iks
Ioge = -a80r, h°‘; c(k) (1)

where k is the reduced-frequency parameter @c/2V, and C(k) is a
complex quentity F(k) + iG(k). The real part of this quantity is asso-
ciated with the in-phase component of 1ift and the imaginary pert with
the out~of-phase component of 1ift; the total. 1ift functions include both
circulatory amd noncirculatory effects. For a rigid restrained wing in
a sinusoldal gust the total 1ift can be expressed as

Woeiks

Lz,08¢c = 'qSCIu v (k) (2)

The 1ift on & rigid wing experiencing a sudden acquisition of verti-
cal velocity h, can be expressed as

Ljng = -q_SC]'_u. 1,:,-—0- kl(S) (5)

and for a wing penetrating a sharp-edged gust of vertical velocity W,
the 1ift can be expressed as

Lg,ina = -a5Cr, %Q ko(s) (%)

where k,(s) and k,(s) are the indicial 1ift functions for a wing given

e sudden change in sinking speed and for a wing penetrating a sharp-edged.
gust, respectively.

The functions C(k) and kl(s) are reciprocally releted as shown
in reference 1l by the following expressions:

¢(x) = F(k) + i6(k) = 1 + 11:_/‘m [kl(s) - 1]e"1k5ds (5)
0

kl(s)=l+ﬁ-fwﬂl‘-)f‘—l-eiksdk (s>0)  (6)
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Similerly, @(k) and k2(s) are reciprocally relsted as follows:

o(k) = 1 + 1kj? [ko(s) - 1]etkoas (7)

k2(s) =1+ ;‘ifm cP(kl): -1 e1kBax (s > 0) (8)

In sppendix A the functions k;(s) and kp(s) ere given as obtained

from various references for different types of flews and plen forms. The
functions C(k) and @(k) were obtained by means of equations (5) end
(T7), respectively, and are elso presented in appendix A. The various
types of flows and plan forms for which these functions were derived are
discussed more fully in the following section.

PRESENTATION OF RESULIS

The unsteady-lift functions k,(s), ky(s), C(k), end ¢(k) are

presented in appendix A and in figures 1 to 20. These functions are
given for two-dimensional wings in incompressible flow (figs. 1 end 2),
subsonic compressible flow (figs. T and 8), sonic flow (figs. 11 and 12),
and supersonic flow (figs. 13 and lll-); for elliptical and rectangular
wings in incompressible flow (figs. 3 to 6); for wide delta end rectan-
gular wings in supersonic flow (figs. 15 to 20); and for delta wings of
va.nish:;.ng aspect ratio in incompressible and compressible flow (figs. 9
and 10).

The C(k) functions, although derived by other authors for all the
wings comsidered herein, were recealculated by means of equation (5) from
existing kl(s) functions. The functions C(k) as derived by use of

equation (5) are in agreement with the functions derived by other authors.

The results are given by the equations in appendix A and the figures
which contain plots of the modulus squared for the function q)(k) (tha.t

is, Icpgk)|22 and the separeted real and imeginary perts of the funcs

tion C(k) (that is, F?k) and G(k)). As an aid to the reader, teble I
has been prepared as an index to the equation or reference identifying the
functions ki(s), ky(s), C(k), or @(k), the plen form and type of flow

for which these functions were considered, and the figures where the func-
tions |o(k)|2, F(k), and -G(k) ere plotted.




NACA TN 3748 T
CONCLUDING REMARKS

The total 1ift responses to .simusoidal sinking oscilletions C(k),
and to sinusoidal gusts @(k), have been calculated through use of the
well-~esteblished reciprocal relations for unsteady flow for two-dimensional
wings in incompressible, subsonic compressible, sonic, and supersonic flow;
for elliptical and rectengular wings in incampressible £low; for wide
rectanguler end delta wings in supersonic flow; and for delta wings of
vanishingly low aspect ratio in incompressible and compregsible flow. For
most of the cases considered, closed-form expressions are given and the
final results are presented in the form of plots of the square of the
modulus of the lift coefficients for a wing in a minusoidal gust, and the
in-phase and out~of-phase 11ft components are presented for a wing under-
golng simusoidal sinking oscillations.

Certain geps still exist in the knowledge of the unsteady-lift problem.
For instance, there seems to be little or no information availsble for the
swept wing. For rectangular wings in subsonic flow, and in supersonic flow
for which the characteristic Mech lines intersect the side edges of the
wing, the unsteady-1ift problem remains unsolved, as it is for the delta
wing for subsonic compressible and incompressible flow. Information on
other wings with subsonic leading edges in supersonic flow is also

missing.

Langley Aeronsutical Laeboratory,
National Advisory Committee for Aeronsutics,
Langley Field, Va., June 8, 1956.
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APPENDIX A

A COMPITATION OF THE. FUNCTIONS k(s), kx(s),

c(k), AMD (k)

Two-Dimensional Wing in Incompressible Flow

The functions k,(s) end ka(s) heve been derived by Wagner

(ref. 1t) end Von Kérmén and Sears (ref. 15), respectively. Exponential
spproximations to these functions have been given by Robert T. Jones
(ref. 6) end ere now presented, together with the C(k) and ¢(k) func-
tions as given in references 1 and 11, respectively:

ky(8) = 1.0 = 0.165e70-0438 _ 0.335¢=0-3008 4+ L 5(s) (9)

(8) =~ 1.0 - 0.236e=0-0588 _ 0.513¢-0-3648 _ o 171¢~2-428 (10)
kp

o(k) = K)oy + 5 ' (1)
o(x) = {c(k)cir[Jo(k) - Hl(k)] + iJl(k)}e'ik (12)

where C(k) is defined as the total 1ift function and C(k)e4p repre-

sents the circulatory coamponent of the lift and 1s given in reference 1
as .

~J;1 (k) + 1¥;(k)

elr = ~[7206) + ()] + 1[1(1(1:) - To(w)] ()

¢(x)

clk) =~ %(1 + 1k)
(x >> 1.0) (%)
lo(e) |2 ~ L

The multiplier e-1K (eq. 12) is not included in the function o(k)

(ref. 11) because in reference 11 the time origin is the instant at which
the gust reaches the midchord position of the wing, whereas in this paper
the time origin is the instant at which the gust reaches the leading edge

of the wing.
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Elliptical Wing in Incompressible Flow

For an elliptical wing in incompressible flow, the followlng equa-
tions were derived fram references 6, 16, and 17:

ky(8), p =2(s) + % B(e) (15)

1‘1(:5)A'=3 & 1.0 ~0.283¢-0-5408 , 85(s) - = (16)
3CIuE l - (%)

1;1(:3)A=6 ~ 1.0 - 0.361e~0-3818 85(s) (17)

30, E Vl )|
LA - (&)

2
where E=E||1l - (-)::K) is a camplete elliptic integral of the second

kind. Also,

k2(s)A=0 = g(2 - 8) (058 £1.0) } (18)
ke(s)A=o = 1.0 (s > 1.0)

kg(S)A=3 ~ 1.0 - 0.679e"0'558s - 0.227e™>-208 (19)

k2(8)A=6 ~ 1.0 - 0.l|1+8e"0'2905 - 0.2"{2e"0'7258 - 0.193e-3.008 (20)

Clk)pg = 1 + 1-‘-3-11‘- (21)
Clk)y 5 ~ ik(ﬁ - 6.051%82_11;) * _Bgcif . (e2)
~ - 0.36 _Bik
s ~ o - 53R * (=)
ik
(p(k) A= j_k(_ 2 + EL) (2).;.)
A=0 2 "

e e e ——————————— o ——— PR
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1 __0.679 _ _0.227 )

o)y 5 ~ “‘(ﬂ: 0.558 + ik _ 3.20 + &/ - ) .
~ 1l - _0.1448 . _0.272 _ 0,193

?(k)pg ik(ik 0.290 + 1k _ 0.725 + 1k  3.00 + (26)

Since the functions C(k) and @(k) have been derived from epproximate
expressions for aspect ratios of 3 and 6, no exact asymptotic expressions
could be obtailned. However, for the vanishing-aspect-ratio case, it can
be shown that

c(k)~1+1-*3il‘-

2,1
ot [" ~ 5

(k > > 1.0) (27)

(The magnitude of the Dirac delta function in equations (16) and (17)

approaches -6& a8 A— for g in half root chords but reduces to %

7
for s In half mean geometric chords .)

Rectangular Wing in Incampressible Flow

The functions k‘l(s)cir’ k2(s), and C(k)cir for rectangular wings

of espect ratio 4 and 6 have been calculated spproximately and are tebulated
in reference 7. The noncirculatory components of kl(s) are shown in refer-
ence 18 to be 06860“ 5(s) eand 96&5—“-5(3) for A=4 apd A =6,

Iy, T
respectively. In order to obtain the function 9(k), an exponential
approximetion was made for the function k2(s). These expresslions are
now presented, together with the expression for the vanishing-aspect-ratio
case obteined from reference 16 and the corresponding oscillatory
functions @(k):

kp(8)y o =4{s) (28)
k2(s)A=’+ ~ 1.0 - 0.391e-0-2858 _ 0.609¢-1-6388 (29)

kp(8)y g =~ 1.0 - 0.535¢~0-2998 _ 0_465¢-2-008 (30)
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P(k)po = 1.0
~ 1 0.391 _ __0.609 )
?(k) gy ik(ik .0.285 + ik 1.638 + ik

0.299 + ik _ 2.00 + :Lk)

ol = 1e{ - B - O

11
(51)

(32)

(33)

Again, the asymptotic expressions could not be obtained except for the

vanishing-espect-ratio case:

c(k) =1 + 21x

(k >> 1.0)

|<p(k)|2 =1

Two~Dimensional Wing in Subsomic Compressible Flow

For the two-dimensional wing in subsonic compressible flow, the

following equations have been derived from references 2 and 3:

1;1(:3)M=0.5 =~ 1.0

= 1.0

f

k(8 o.6

kl('s)M=o.7 ~ 1.0

0.390e~0-0T168 _ g yo7e=0-5The

k2(BM=05 1.0

kp(8)y 0.6~ 10

1:2(:3)M=0 7 1.0

0.328e~0-09458 _ o 330¢-0-25Ts

0.352e0-0THE _ o 2616-0-3728 , ¢ gge=1-8908
0.3562¢~0-06468 _ 0.50e~0-4818 0.71)l-e_0'9585
0.364e~0-05368 _ o.L05e~0-35T8 _ g.}19¢=0-9028

- 0.203e-2-1658

0.242e"1-161s

klyp,5 ~ 1k

0.402e0-0M28 _( 1,610-0-31258 _ ¢ y37=1-4Ths
L1 ___0.390 0.407  _ _ 0.203 )
ik = 0.0716 + ik O0.37h + ik 2.165 + ik

(34)

(35)
(36)
(37)
(38)
(39)
(%0)

(41)
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~ 11f1 0.328 _ _ 0.430 0.242 )
(k0.6 ik(ﬁ? " Cs T IE T 0+ IE T ThL ) W +R)

~ 11 [L 0.402 ___ok61 _ _ 0.137 )
(P(k)M=0-7 ik(ik 0.0542 + 1k  0.3125 + ik 1.h7h + ik (43)

The function C(k) has been calculated fram the coefficients com-
piled in teble I of reference 3.

The asymptotic expressions can be shown to be

o(x) ~ %ﬂ%(l +1 %;M-M)
| » _@L (x > 1.0) (u4)
(k)| < =~ 57

provided it is assumed that the functions kl(s) and ka(s) and their
first derivatives are contimuous. (See appendix B.)

As shown in eppendix B, the determination of the asymptotic behavior
is dependent not only on the continuity of the function and its deriva-

tives, but also on the value of the function and its derivatives et
8 = 0. Therefore, although the k; and k, functlons have been deter-

mined nmummerically for s > 1'2tf_M’ the known exact expression for

8 < 1214 N as given in reference 19 may be utilized to obtain the

asymptotic expressions for CEk) and @(k), provided it is assumed that
the functions k;(s) end k(8 ) eand their first derivatives are

continuous.

Vanishing-Aspect-Ratio Delte Wing in Incompressible
and Compressible Flow

For a delta wing of vanishing aspect ratio in incompressible flow,
the indicial 1ift functions have been obteined from reference 16 and are

k(s) =1(s) + -32- 5(s) (45)

» .
keis) = %— (0£s8<52) (56)
kx(s)

]
=
@)

—~
u
Vv
o

~
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The corresponding oscillatory functions are

c(k) = 1.0 + % ik (1)
(k) = iefik - =5 1 - e-2ix) (48)
2K’

c(k) =~ 1.0 + % 1k
(kx >> 1.0) 49)
|o(x)|? ~ ;15

The kl function for the vanishing-aspect~ratio delta wing in com-

pressible flow has been presented in reference 19. However, because of
the difficulty of obtaining the oscillatory 1lift function C(k) from

this function, the results derived in reference 10 for the oscillatory
lift function for the delta wing are presented instead. The k, <function

hes been derived in sppendix C of this report and the correspording o@(k)
function waes subsequently derived. The functions Icp(k)l 2 and (k) are

presented in figures 9 and 10 for Mm = M % = 0.1 where m is the tangent

of the semlapex angle of the delta wing. The asymptotic behavior of
|q>(k)|2 for Mm = 0.1 cen be obtained if it is assumed that the ky(s)

function and its £first two derivatives are continuous. Based on the
analysis obtained in appendix B and the ko function presented in appen-

dix C, it can be shown that

lo(x)] 2 ~ % (x > 1.0) (50)
K

The asymptotlic expression for the function C(k) » &8ls0 based on the
assumptions stated previously, can be shown to be

o(k) =~ éMLl + 13 ml;ka“M)] (x > 1.0) (51)

S, —— - e
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Two~-Dimensional Wing in Sonic Flow

The functions Glukl(s) and CIuk2(s) for a wing in two-dimensional

sonlic flow were obtained from the functions presented in reference 20 for
& wing in two-dimensionel supersonic flow by teking the limit as M~—1.0.
The resulting expressions are

CrXi(s) =4 (0 €£8%1.0)
r (52)
CIukl(s) = lﬁl:z ys -1+ cos"l(s = 2)] (s > 1.0)
iy(s) = 28 (0%sS1.0)
T r (53)
C]-_u'ka(s) = % 8 cos:"l(s = 2) !"\[E 1. (s> 1.0) J

The function CIEC(k) was obtained fram reference L and (‘Tuq>(k) wes
derived by the use of equation (7). These expressions are

o C(k) = lﬂ-l-@%l e 1K 4 1(1 + 1)£(k) (54)
o 9(x) = 2L o(x) (55)
where the Fresnel integral f£(k) is defined by
k iy
= e 6
£(x) j; e (56)

The unnormalized functions have been presented, since the theoretical
value of cIu, for two-dimensionsl sonic flow is infinite.

Two-Dimensional Wing in Supersonic Flow

For a two-dimensional wing in supersonic flow, the following equa-
tions have been derived from references 20 and 5:
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ky(s) = 5[}%('3 + sin~1 M_;_M_s’_) + %‘- cos™L 2 + ZM- su? +
2 22
%‘\IZF-( -%J (M2§1<S§M2lf1)
k (8) = 1.0 (S > 2 1) |
ko) = 5 0 (ogngZfl)
ky(s) = 5% B(E + sin™t M) + % cog=L M2 + 8 — @ |
(Ma-: 1 <s § Malf ]_)
ky(s) = 1.0 (S > 2 1) J
c(k) = £,(M,3) + ﬁk[fo(M,E) - fl(M,a,-)]
?(k) = £,(4,3)
where
® = %2&

15

(57)

(58)

(59)

(60)

(61)

and fo and fl are the Schwarz functions of order O and 1, the Schwarz

function of order n being defined as

£, (M,5) = fo : xne‘ﬁ‘xqq(—%-")dx

(62)

The functions £,(M,5) are tebulated for M> 1.0 in refevence 21,

for exemple. The asymptotic expressions are
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(k) ~§
| (k)lz _ﬁ . (x >> 1.0)
Q) s

No'a

Wide Delte Wing in Supersonic Flow

(65)

For a wide delte wing in supersonic flow, the following equations

have been derived from references 22 and 8

ot .
i (s) =§[< +%)( bl o) Loo1 2 oAl s,
! o o I - ST
i, (8) = 1.0 (5 > 2 |
ky(s) = £ & (ogsgn%l.) |
kple) = Lcost 2oz re B2 ool Me o
e - ety (Br<e sy
y(s) = 1.0 (o> 52

r (64)

r (65)

(k) = 2 {fo(M,E) - £,(M,®) + ik[fo(M,E) - 28, (M,®) + fa(M,m)]}

o(x) = %Ea-aikf()(%&;l%) - fo(M;ﬁ)]

(66)

(67)
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and '

(k) z%

> (x > 1.0) (68)
2(y2

e

The function fo(ﬁ,;%) wes celculeted by numericel integration of equa-

tion (62), inasmuch as no tebulations were available of the Schwarz
function for M < 1.
Wide Rectangular Wing in Supersonic Flow

For a wide rectanguler wing in supersonic flow, the following equa-
+ions have been derived from references 235 end 9:

(k- Bme -k - 2l - ) 5o sy)
(!Bh - E%)kl(s) = %‘l:ﬁ(g + sin~1 22 Ms) + 5 cos™L 2" L at
e e T
Ma£1<s§Mng'T)
(b &34 brifts)
(g-ggﬁkg(s) =%é—% =s 2 (702)
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L io(s) =
(—5 - -—g—)ke(s) =% - Egi (s > & 1) (70e)

‘ (% - Egz)c(k) = %’ {%— £o(M,®) + ik 1Eo(m,a‘a) - fl(M,m)]} +
ﬁé%rbz[aik -1l+e (cos gt M sin g)] (71)

|E. ~e i""(cos v iM sin M)—J (72)

(x >> 1.0) (73)
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APPENDIX B

ASYMPTOTIC BEHAVIOR OF OSCILLATORY LIFT COEFFICIENTS AS

DETERMINED FROM INDICIAIL LIFT FUNCTIONS

In the following enalysis it is. shown that the asymptotic
behavior of the oscillating 1ift coefficlents can be determined from the
initisal behavior and the discontinuities in the derivatives of the
indicial 1ift functions.

If y(k) represents either C(k) or ¢(k) and if K(s) repre-
sents the corresponding function k;(s) or ke(s), then the reciprocal

relation is

w() = 1k fo " K(s)emlk=a (74)

If X(s) hes the following properties:

(1) x(s) and all its derivatives up to and including K(N) (8) are
contimious

(2) There is a sequence of points sy (where 3 =1,2, . . .)

at which one or more of the derivatives K'*/(s) (where
n > N) has a finite discontinuity

then by N + 1 successive integrations by parts, equation (74) can be
expressed as

o (n)
¥(x) = (—iji% J; k(W) (g)e kB +:L:'O %ﬁ—) (5)

For further integrations by parts, the discontimiities contribute terms
of the form

1 nl}(n)(s #) - K(n)(sj-)]e-iksa (76)

(1x)
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s0 that
(n) > leAn) .+ (n)/, -\|.~1ks
_ x3)(o) + ZE{ ss*) - K\)(s ]e J
o) = S ER), S ) )
2=0 (ik) n=N+1 (1x)™

(77)
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APPENDIX C

INDICIAL LIFT FUNCTION FOR DELTA WING OF VANISHING
ASPECT RATIO IN COMPRESSIBLE FIOW PENETRATING

A SHARP-EDGED GUST

The differential equation which governs the flow field for a very
narrow delta wing has been shown in reference 19 to be

¢y’y’ + ¢ZZ = ¢tt (78)

where the x, y, and z axes are fixed on the wing and the time varieble
is t' = t/a. The loading coefficient can be shown to be

o_YEie +d) (19)

and the boundary conditions asgsociated with this wing penetrating a
sharp-edged gust are

Wy = W (x< Mt)

(80)
Wp=0 (x > Mt)

where W, is the induced vertical velocity on the wing. As in refer-
ence 19 the boundeyry conditions meed only be satisfied over a span strip
of the wing, since it was assumed that the velocity gredientes in the

y-, z2-, and t-directions are independent of the gradient in the x-direction. .
See following sketch.

Sketch (a)
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Sketch (b) then represents the problem under consideration:

‘<_‘_'b(x)—"‘
> ¥y
t = ﬁ,
N\ /
N /
N\ L /
N\ /
\
N | /
N4
2 N
/7 AN
/7 N
/ AN
/ AN
/ AN
(/ 3 \\
AN ﬂ
Y 1
t
Sketech (b)

If the axes ere transformed by the relation

(81)

RIM
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then the problem can be represented by the following sketch:

€—Db(x) —> v

2b(x) X

Sketch (c) -

In the lifting-surfece analog, this corresponds to the problem of
finding the velocity potential over a flat rectangular wing of low aspect
ratio situated in a free stream st a Mach mumber equel to {2. Solutions
to this problem are given in reference 19 and are now presented; the sub-
seripts represent the region under considerstion.

(B )1 = o (82)
| - _ Mo 1,[ b(x) -1yl
(¢T)2 7 van J-r - b(x) + |¥] (8)

__ ol 1| blx)+y Al bx) -y g
(0 )5 = - 2 tem \,T_b(x)_y+ta.n \IT_b(x)” 5| (@)
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and, for laerge values of T (tha:b is, for the higher number regions in

sketch (c)),
po = o5 ‘,1 ; [;é_)]z (85)

where en integral equation for f[bz' ) together with a tabulation of
x
this function is given in reference 19.

Solving equations (82) to (85) for the velocity potential ¢ amd

substituting into. equaetion (79) yields the following loeding coeffi-
cients for the various regions:

(=), - o

(%)2 - Bz?rm ;(Sxi Tyllﬂ o

o, ¥ ]

), T/o(x) . 2

Bloato 2 [ oy G BT
-]

(89)

The corresponding 1lift coefficlent per unit length is

1 b{x) =T 1 b(x)

TSR TR GO AR - F WIS ()

- - b(x)-T b(x) |
—| = == %) gy 4+ L_ o
' b(x)] bx)Jo (Q)z,dy * b(x) i/;(x)..rr(‘l)gdy (b(x) < 7 < 2b(x))|
b(x)
T
: P(x) 2b(x) fb(x) T>>2b(x) ('r > 2b(x))

J

(90)
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Evaluation of equation (90) yields

_ i
Z(T’(Tzc))z: v b(Tx) (7 < 20(x)) (91a)

2| /o) . . .
z(b(x))u == L .f(n)dn 0 f[b(x)] (r > 2(x)) (91p)

where the subscripts indicate the regions in the xt-plane where 1(x)
applies. See followling sketch.

t 4

e

ck
]

25
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i
Il
|
l
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Y
]

Sketch (d)

A plot of equations (91a) and (91b) is presented in Ffigure 21 where it
can be seen that an error of about 5 percent exists at T _ = 2 because

b(x)

of the essumption made in equation (85).

The 1ift coefficient for the wing 1s obtained fram the equation

. c b
[ B e o0

Substituting the appropriate expression from equations (9la).and (91b)
into equation (92) gives




26 NACA TN 3748

Mt

o) = [ e e [ e/ b)) e
(b <)
() = 25 fM:/l+% 2 Yiy] ax+ [ o/ sfey] e
(§< o< o(229)
oaf) = B [} e ex (6> o(457%)) J

e (93)

Evaluating equation (93) and making the substitution

2t _ 2
c (o]

B =

)
I A 2| B 2 " _2(n)an ’
k2(5) = L = i ﬁ(l % + 1' - 2](; f(ﬂ)d‘l’] +f 3

> (ol)

_2’“_”_;”2 + 2Mm)” (1 + M) 2 (1 + Muoy)
(s £2)
__.2 2 2|82
k2(s)——m+ms+l}2(2)-mr (2 <8 £2 + 4iMn)
S5=2
2V 2 pw
(s) = £(n)an + 3 £(n)a (s > 2 + 4Mm)
T |

Equetion (94) has been evaluated mumerically for Mm = M-EA- = 0.1 and the

results are presented in figure 22, together with the results for M =0
a8 given in reference 17. It might be of interest to note that for
M =0 equetion (9%) reduced to the equation given in reference 17.
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TABLE I.- INDEX TO FIGURES, EQUATIONS, AND REFERENCES
2
Type of fiow Wing plan form c(k) olxy | COO=E@® +ic() | le)*
Incompressible Two dimensional | Eq. (11) | Eq. (12) 1 2
Elliptical
A=0O Eq. 21; Bg. (2b
Incompressible A=3 Bq. (22 Eq. (25 L
° A=6 B (23) | Bq. (26 (=)3 4
Ao o Eq. .'L'I.) Eq. (12
Rectangular
A=0 Ref. 16 | Eq. (3)
Incompresaible Aok }Ezef 1 |E G2 (=) 6
A=o . (11) | Bq. (12)
Subsonic compressible:
M=0 Eq. (11) | Eq. (22)
M= 0.9 Two dimensional Eq. hl; 7 8
M=0. . Ref. 3 | Bq. (42
M= 0.7 Eq. (43)
Campressible and
incompressible: Low
M=0 aspect-ratio delta| Ea. (¥7) | Eq. (48) 10
&E = 0.1 Ref. 10 (v) 9
Sonie Two dimensional | Eq. (54) | Ea. (55) n 12
Supersonic:
U= _192’ ;:{2, 2, and % Two diwensional | Eq. (59) | Eq. (60) 13 1k
B“:’::’g"ig, 2, et 10 Wide delta Eq. (66) | Bq. (67) 15 16
9° 7 3
Supersonic: Wide rectangular
A=l X7(a) 18(a)
Mwil 2 ana il A=2 17(b) 18(b)
7 3 A=k 17(c) 18(c)
u=1 °Ea. (70) |pEa. (72) 19(a) 20(a)
Me2 Awl, 2, b, and w 19(b) 20(nb)
Mo % 19(¢) a)(c)

20nly circulstory component of 1ift plotted.
bCa.'l.qu.nted mumerically from ke(s) function given in eppendix C.
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Figure l.- The functions C(k) for a wing in two-dimengional incom-
preesible flow.
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Figure 2.~ The function lq:(k) |2 for a wing in two-dimensionel incom-
pressible flow.
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Figure 5.~ The functions C(k)o3, fFor elliptical wings of various aspect
ratios in incompressible flow.
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Figure 4.~ The functions |cp(k)l 2 for elliptical wings of various aspect
reatios in incompressible flow.
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Figure 5.- The functions C(k),4, for rectangular wings of verious aspect
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Figure 6.~ The functions [cp(k) |2 for rectangular winges of various aspect
ratios in incompressible flow.
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Figure 8.~ The functions lcp(k)l2 for a wing in two-dimensional subsonic
compressible flow.
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Figure 10.-~ The functions |q>(k)]2 for a delta wing of venishingly small

aspect ratio in incompressible and compressible flovw.
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Figure 15.- The functions C(k) for a wide delta wing in supersoniec flow.
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